Selasa, 04 November 2014

ARSITEKTUR SET KONTRUKSI DALAM PERORGANISASIAN KOMPUTER


ARSITEKTUR SET KONTRUKSI DALAM PERORGANISASIAN KOMPUTER
1. Instruction set architecture (ISA) / arsitektur set instruksi
ISA meliputi spesifikasi yang menentukan bagaimana programmer bahasa mesin akan berinteraksi oleh computer. ISA menentukan sifat komputasional computer.
2. Hardware system architecture (HSA) / arsitektur system hardware
HAS berkaitan dengan subsistem hardware utama computer (CPU, system memori dan IO). HSA mencakup desain logis dan organisasi arus data dari subsistem.
JENIS INSTRUKSI
- Data processing/pengoahan data : instruksi aritmetika dan logika.
- Data storage/penyimpanan data : instruksi-instruksi memori.
- Data movement/perpindahan data : instruksi I/O.
- Control/control : instruksi pemeriksaan dan percabangan.
Instruksi aritmetika memiliki kemampuan untuk mengolah data numeric. Sedangkan instruksi logika beroperasi pada bit-bit word sebagai bit, bukan sebagai bilangan. Operasi-operasi tersebut dilakukan teutama untuk data di register CPU.
Instruksi-instruksi memori diperlukan untuk memindah data yang terdapat di memori dan register.
Instruksi-instruksi I/O diperlukan untuk memindahkan program dan data kedalam memori dan mengembalikan hasil komputasi kepada pengguna.
TEKNIK PENGALAMATAN
Ada 3 teknik dasar untuk pengalamatan, yaitu:
1. Pemetaan langsung (direct mapping), terdiri dari dua cara yakni Pengalamatan Mutlak (absolute addressing) dan Pengalamatan relatif (relative addressing).
- Pengalamatan Mutlak
Untuk teknik pengalamatan ‘alamat mutlak’ ini, tidak terlalu mempermasalahkan kunci atribut karena diminta langsung menuliskan di mana alamat record yang akan di masukkan. Jika kita menggunakan hard disk atau magnetic drum, ada dua cara dalam menentukan alamat memorinya, yaitu (1) cylinder addressing dan (2) sector addressing. Jika kita menggunakan cylinder addressing, maka kita harus menetapkan nomor-nomor dari silinder (cylinder), permukaan (surface), dan record, sedangkan bila kita menggunakan sector addressing, maka kita harus menetapkan nomor-nomor dari sektor (sector), lintasan (track), dan permukaan (surface). Teknik ini mudah dalam pemetaan (pemberian) alamat memorinya. Sulitnya pada pengambilan (retrieve) data kembali, jika data yang kita masukkan banyak, kita bisa lupa di mana alamat record tertentu.
-pengalamatan relatif
Teknik ini menjadikan atribut kunci sebagai alamat memorinya, jadi, data dari NIM dijadikan bertipe numeric(integer) dan dijadikan alamat dari record yang bersangkutan. Cara ini memang sangat efektif untuk menemukan kembali record yang sudah disimpan, tetapi sangat boros penggunaan memorinya. Tentu alamat memori mulai dari 1 hingga alamat ke sekian juta tidak digunakan karena nilai dari NIM tidak ada yang kecil. Pelajari keuntungan dan kerugian lainnya.Teknik ini termasuk dalam katagori address space dependent.
2. Pencarian Tabel (directory look-up)
Teknik ini dilakukan dengan cara mengambil seluruh kunci atribut dan alamat memori yang ada dan dimasukkan ke dalam tabel tersendiri. Jadi tabel itu (misal disebut dengan tabel INDEX) hanya berisi kunci atribut (misalkan NIM) yang telah disorting (diurut) dan alamat memorinya. Jadi, sewaktu dilakukan pencarian data, tabel yang pertama dibaca adalah tabel INDEX itu, setelah ditemukan atribut kuncinya, maka data alamat yang ada di sana digunakan untuk meraih alamat record dari data (berkas/ file/ tabel) yang sebenarnya. Pencarian yang dilakukan di tabel INDEX akan lebih cepat dilakukan dengan teknik pencarian melalui binary search (dibagi dua-dua, ada di mata kuliah Struktur dan Organisasi Data 2 kelak) ketimbang dilakukan secara sequential. Nilai key field (kunci atribut) bersifat address space independent (tidak terpengaruh terhadap perubahan organisasi file-nya), yang berubah hanyalah alamat yang ada di INDEX-nya.
3. Kalkulasi (calculating).
Kalau pada teknik pencarian tabel kita harus menyediakan ruang memori untuk menyimpan tabel INDEX-nya, maka pada teknik ini tidak diperlukan hal itu. Yang dilakukan di sini adalah membuat hitungan sedemikian rupa sehingga dengan memasukkan kunci atribut record-nya, alamatnya sudah dapat diketahui. Tinggal masalahnya, bagaimana membuat hitungan dari kunci atribut itu sehingga hasilnya bisa efisien (dalam penggunaan memori) dan tidak berbenturan nilainya (menggunakan alamat yang sama).
DESAIN SET INSTRUKSI
Desain set instruksi merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya adalah :
1. kelengkapan set instruksi
2. ortogonalitas (sifat indepedensi instruksi)
3. kompatibilitas :
- source code compatibility
- object code compatibility
Selain ketiga aspek tersebut juga melibatkan hal-hal sebagai berikut :
a. Operation Repertoire: Berapa banyak dan operasi apa saja yang disediakan, dan berapa sulit
operasinya
b. Data Types : tipe/jenis data yang dapat diolah.
c. Instruction Format : panjangnya, banyaknya alamat, dsb.
d. Register : Banyaknya register yang dapat digunakan .
e.Addressing : Mode pengalamatan untuk operand.


Desain Set Instruksi

Set Instruksi (bahasa Inggris : Instruction Set, atau Instruction Set Architecture (ISA)) didefinisikan sebagai suatu aspek dalam arsitektur komputer yang dapat dilihat oleh para pemrogram. Secara, ISA ini mencakup jenis data yang didukung, jenis instruksi yang dipakai, jenis register, mode pengalamatan, arsitektur memori, penanganan interupsi, eksepsi, dan operasi I/O eksternalnya (jika ada).
ISA merupakan sebuah spesifikasi dari kumpulan semua kode-kode biner (opcode) yang diimplementasikan dalam bentuk aslinya (native form) dalam sebuah desain prosesor tertentu. Kumpulan opcode tersebut, umumnya disebut sebagai bahasa mesin (machine language) untuk ISA yang bersangkutan. ISA yang populer digunakan adalah set instruksi untuk chip Intel x86, IA-64, IBM PowerPC, Motorola 68000, Sun SPARC, DEC Alpha, dan lain-lain.
KARAKTERISTIK DAN FUNGSI SET INSTRUKSI
Operasi dari CPU ditentukan oleh instruksi-instruksi yang dilaksanakan atau dijalankannya. instruksi ini sering disebut sebagai instruksi mesin (mechine instructions) atau instruksi komputer (computer instructions).
Kumpulan dari instruksi – instruksi yang berbeda yang dapat dijalankan oleh CPU disebut set instruksi (Instruction Set).
ELEMEN-ELEMEN DARI INSTRUKSI MESIN (SET INSTRUKSI)
Operation Code (opcode) : menentukan operasi yang akan dilaksanakan
Source Operand Reference : merupakan input bagi operasi akan dilaksanakan
Result Operand Reference : merupakan hasil dari operasi yang dilaksanakan
Next instruction Reference : memberitahu CPU untuk mengambil (fetch) instruksi berikutnya setelah instruksi yang dijalankan selesai.
FORMAT INSTRUKSI
Suatu instruksi terdiri dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout dari suatu instruksi sering disebut sebagai Format instruksi (Instruction Format).

ORGANISASI KOMPUTER DASAR


ORGANISASI KOMPUTER DASAR

A. KOMPONEN SISTEM
Sebuah komputer moderen/digital dengan program yang
tersimpan di dalamnya merupakan sebuah system yang
memanipulasi dan memproses informasi menurut kumpulan
instruksi yang diberikan. Sistem tersebut dirancang dari
modul-modul hardware seperti :
1. Register
2. Elemen aritmatika dan logika
3. Unit pengendali
4. Unit memori
5. Unit masukan/keluaran (I/O)
Komputer dapat dibagi menjadi 3 bagian utama, yaitu :
1. Unit pengolahan pusat (CPU)
2. Unit masukan/keluaran (I/O)
3. Unit memori
CPU merupakan bagian fungsional yang utama dari sebuah sistem komputer, dapat dikatakan bahwa CPU merupakan otak dari sebuah komputer. Di dalam CPU inilah semua kerja komputer dilakukan.
Hal-hal yang perlu dilakukan CPU adalah:

1. Membaca, mengkodekan dan mengeksekusi instruksi program
2. Mengirim data dari dan ke memori, serta dari dan ke bagian input/output.
3. Merespon interupsi dari luar.

MEMORI Adalah bagian fungsional komputer yang berfungsi untuk menyimpan program dan data.

• RAM (Random Access Memory)

Adalah memori yang dapat dibaca atau ditulisi. Data dalam sebuah RAM bersifat volatile, artinya data akan terhapus bila catu daya dihilangkan. Karena sifat RAM yang volatile ini, maka program computer tidak tersimpan di RAM. RAM hanya digunakan untuk mcnyimpaii data seinantara, yang ticlak begilu vital saal aliran daya terpiilus.

• ROM (Read Only Memory)

adalah memori yang hanya dapat dibaca. Data yang tersimpan dalam ROM bersifat non-volatile, artinya data tidak akan lerhapus meskipun catu daya IcrpuWis. Kaicna sil’alnya yang dcinikiaii, maka ROM dipergunakan untuk menyimpan program. Ada beberapa tipe ROM, diantaranya ROM murni, PROM, dan EPROM.
CARA KERJA SISTEM KOMPUTER:
Saat data dan/atau instruksi dimasukkan ke processing-devices, pertama sekali diletakkan di RAM (melalui Input-storage). apabila berbentuk instruksi ditampung oleh Control Unit di Program-storage, namun apabila berbentuk data ditampung di Working-storage). Jika register siap untuk menerima pengerjaan eksekusi, maka Control Unit akan mengambil instruksi dari Program-storage untuk ditampungkan ke Instruction Register, sedangkan alamat memori yang berisikan instruksi tersebut ditampung di Program Counter. Sedangkan data diambil oleh Control Unit dari Working-storage untuk ditampung di General-purpose register (dalam hal ini di Operand-register). Jika berdasar instruksi pengerjaan yang dilakukan adalah arithmatika dan logika, maka ALU akan mengambil alih operasi untuk mengerjakan berdasar instruksi yang ditetapkan. Hasilnya ditampung di Accumulator. Apabila hasil pengolahan telah selesai, maka Control Unit akan mengambil hasil pengolahan di Accumulator untuk ditampung kembali ke Working-storage. Jika pengerjaan keseluruhan telah selesai, maka Control Unit akan menjemput hasil pengolahan dari Working-storage untuk ditampung ke Output-storage. Lalu selanjutnya dari Output-storage, hasil pengolahan akan ditampilkan ke output-devices.

CARA KERJA KOMPUTER
a. Pemrosesan

Sebuah CPU atau singkatan dari Unit Pemproses Pusat dalam bahasa inggrisnya central processing unit, bertugas untuk memproses arahan, melakukan pengiraan dan mengatur lalu lintas informasi menerusi system komputer. Unit atau perangkat pemprosesan juga akan melakukan komunikasi dengan perangkat input, output dan penyimpanan untuk melaksanakan arahan-arahan yang berkaitan.

Di dalam arsitektur milik bapak von Neumann yang asli, ia telah menjelaskan tentang sebuah Unit Aritmatika dan Logika, serta sebuah Unit Kontrol. Pada komputer modern, kedua unit ini terletak dalam satu sirkuit terpadu yaitu IC atau Integrated Circuit, yang juga dinamakan CPU atau Central Processing Unit.

Apakah yang dimaksud dengan Unit Aritmatika dan Logika, atau Arithmetic Logic Unit (ALU)? Unit Aritmatika dan Logika, atau Arithmetic Logic Unit (ALU) adalah alat yang melakukan tugas dasar seperti tugas aritmatika (penjumlahan, pengurangan, dan semacamnya), tugas logis (and, or, not), dan pelaksanaan perbandingan (contohnya, membandingkan isi sebanyak dua slot untuk kesetaraan). Pada unit inilah dilakukan “kerja” yang nyata.

Unit kontrol menyimpan perintah yang dilakukan oleh komputer, memerintahkan ALU untuk melaksanaan dan mendapat kembali informasi (dari memori) yang diperlukan untuk melaksanakan perintah itu, dan memindahkan kembali hasil ke lokasi memori yang sesuai. Sekali yang terjadi, unit kontrol pergi ke perintah berikutnya.

b. Input dan Hasil
I/O mengizinkan komputer memperoleh informasi dari dunia luar, dan meletakkan hasil pekerjaannya di sana, dapat berbentuk fisik atau non fisik. Ada berbagai macam alat I/O, dari yang akrab ditelinga kita seperti keyboard, monitor dan hardisk, ke yang lebih tidak biasa misalnya adalah webcam (kamera web), mesin printer, mesin scanner, dan lain lain.
Yang dipunyai oleh semua alat masukan biasa adalah bahwa mereka merubah informasi dari suatu macam ke dalam data yang bisa diolah lebih lanjut oleh sistem komputer digital. Alat output, merubah data ke dalam informasi yang dapat dimengerti oleh pemakai komputer. Dalam pengertian ini, sistem komputer digital ialah contoh dari sistem pengolah data.

c. Instruksi / perintah
Perintah atau instruksi yang dibahas seperti judul di atas adalah tidak perintah kaya bahasa manusiawi. Komputer hanya mempunyai jumlah yang terbatas perintah sederhana yang dirumuskan dengan baik. Perintah biasa yang dipahami kebanyakan komputer ialah misalnya “melakukan penyalinan isi sel 456, dan tempat tiruan di sel 789?, menambahkan isi sel 888 ke sel 063, dan tempat akibat di sel 024?, dan “jika isi sel 777 adalah 0, perintah berikutnya anda di sel 456?.
Perintah atau Instruksi dimulai dalam komputer sebagai nomor – kode untuk “menyalin” mungkin menjadi 001, misalnya. Suatu himpunan perintah khusus yang didukung oleh komputer tertentu diketahui sebagai bahasa mesin komputer. Dalam prakteknya, orang biasanya tidak menulis perintah untuk komputer secara langsung di bahasa mesin tetapi memakai bahasa pemrograman “tingkat tinggi” yang kemudian diterjemahkan ke dalam bahasa mesin secara otomatis oleh program komputer khusus (interpreter dan kompiler). Beberapa bahasa pemrograman berhubungan erat dengan bahasa mesin, seperti assembler (bahasa tingkat rendah); di sisi lain, bahasa seperti Prolog didasarkan pada prinsip abstrak yang jauh dari detail pelaksanaan sebenarnya oleh mesin (bahasa tingkat tinggi).

d. Arsitektur
Komputer kontemporer meletakkan ALU dan juga unit kontrol ke dalam satu sirkuit terpadu yang dikenal sebagai Central Processing Unit (CPU). Biasanya, memori komputer ditempatkan di atas beberapa sirkuit terpadu yang kecil dekat CPU. Alat yang menempati sebagian besar ruangan dalam komputer adalah ancilliary sistem (misalnya, untuk menyediakan tenaga listrik) atau alat I/O.

Beberapa komputer yang lebih besar berbeda dari model di atas di satu hal utama – mereka mempunyai beberapa CPU dan unit kontrol yang bekerja secara bersamaan. Terlebih lagi, beberapa komputer, yang dipakai sebagian besar untuk maksud penelitian dan perkomputeran ilmiah, sudah berbeda secara signifikan dari model di atas, tetapi mereka sudah menemukan sedikit penggunaan komersial.

Fungsi dari komputer secara prinsip sebenarnya cukup sederhana. Komputer mencapai perintah dan data dari memorinya. Perintah dilakukan, hasil disimpan, dan perintah berikutnya dicapai. Ulang prosedur ini sampai komputer dimatikan.

e. Program

Program komputer merupakan daftar perintah yang besar untuk dilakukan oleh komputer. Banyak program komputer berisi jutaan perintah, dan banyak dari perintah itu dilakukan berulang kali. Suatu Komputer modern yang umum dapat mengerjakan sekitar dua sampai tiga milyar perintah dalam satu detik. Komputer tidak mendapat kemampuan luar biasa, mereka lewat kemampuan untuk melakukan perintah kompleks.

Tetapi, mereka melakukan jutaan perintah sederhana yang diatur oleh orang yang disebut (programmer). [Programmer Baik mengembangkan set-set perintah untuk melakukan tugas biasa sebagai contoh, menggambar titik di layar dan lalu membuat set-set perintah itu tersedia kepada programmer lain]. Saat ini, kebanyakan komputer melakukan beberapa program sekaligus. Ini biasanya diserahkan ke sebagai multitasking. CPU melakukan perintah dari satu program, kemudian setelah beberapa saat, CPU beralih ke program kedua dan melakukan beberapa perintahnya.

f. Sistem Operasi

Sistem operasi merupakan semacam gabungan dari potongan kode yang berguna. Ketika semacam kode komputer dapat dipakai secara bersama oleh bermacam-macam program komputer, kemudian setelah bertahun-tahun, programer akhirnya memindahkannya ke dalam sistem operasi.

ARSITEKTUR KOMPUTER


ARSITEKTUR KOMPUTER

Arsitektur disini dapat didefinisikan sebagai gaya konstruksi dan
organisasi dari komponen-komponen sistem komputer. Walaupun elemenelemen
dasar komputer pada hakekatnya sama atau hampir semuanya
komputer digital, namun terdapat variasi dalam konstruksinya yang
merefleksikan cara penggunaan komputer yang berbeda.
Tingkatan Dalam Arsitektur Komputer
Ada sejumlah tingkatan dalam konstruksi dan organisasi sistem komputer.
Perbedaan paling sederhana diantara tingkatan tersebut adalah perbedaan
antara hardware dan software.

1. Tingkatan Dasar Arsitektur Komputer
Pada tingkatan ini Hardware sebagai tingkatan komputer yang paling
bawah dan paling dasar, dimana pada hardware ini “layer” software
ditambahkan. Software tersebut berada di atas hardware, menggunakannya
dan mengontrolnya. Hardarwe ini mendukung software dengan memberikan
atau menyediakan operasi yang diperlukan software.
Multilayerd Machine
Tingkatan dasar arsitektur komputer kemudian dikembangkan dengan
memandang sistem komputer keseluruhan sebagai “multilayered
machine” yang terdiri dari beberapa layer software di atas beberapa
layer hardware.

2. Machine Layer
Adalah tingkatam yang paling bawah dimana program dapat
dituliskan dan memang hanya instruksi bahasa mesin yang dapat
diinterprestasikan secara langsung oleh hardware.

3. Operating System Layer
Mengontrol cara yang dilakukan oleh semua software dalam
menggunakan hardware yang mendasari (underlying) dan juga
menyembunyikan kompleksitas hardware dari software lain dengan
cara memberikan fasilitasnya sendiri yang memungkinkan software
menggunakan hardware tersebut secara lebih mudah.

4. Higher Order Software Layer
Mencakup semua program dalam bahasa selain bahasa mesin yang
memerlukan penerjemahan ke dalam kode mesin sebelum mereka
dapat dijalankan. Ketika diterjemahkan program seperti itu akan
mengandalkan pada fasilitas sistem operasi yang mendasari maupun
instruksi-instruksi mesin mereka sendiri.

5. Applications Layer
Adalah bahasa komputer seperti yang dilihat oleh end-user.
Klasifikasi Arsitektur komputer (Michael Flynn), berdasarkan karakteristiknya termasuk
banyaknya processor, banyaknya program yang dapat dieksekusi dan struktur memori:

Single Intruction Stream, Single Data Stream (SISD)
Satu CPU yang mengeksekusi instruksi satu persatu dan menjemput atau menyimpan data
satu persatu.
Single Instruction Stream Multiple Data Stream (SIMD)
Satu unit kontrol yang mengeksekusi aliran tunggal instruksi, tetapi lebih dari satu Elemen
Pemroses. Multiple Instruction Stream, Single Data Stream (MISD)
Mengeksekusi beberapa program yang berbeda terhadap data yang sama. Multiple Instruction Stream, Multiple Data Stream (MISD)
Juga disebut multiprocessors, dimana lebih dari satu proses dapat dieksekusi berikut terhadap
dengan datanya masing-masingArsitektur Paralel
Dalam taksonomi arsitektur paralel ada dua keluarga arsitektur paralel yang banyak
diterapkan adalah: SIMD dan MIMD, dimana untuk mesin yang murni MISD tidak ada. Arsitektur SIMD
Mesin SIMD secara umum mempunyai karakteristik sbb:
Mendistribusi proses ke sejumlah besar hardware
Beroperasi terhadap berbagai elemen data yang berbeda
Melaksanakan komputasi yang sama terhadap semua elemen data
Peningkatan kecepatan pada SIMD proporsional dengan jumlah hardware (elemen pemroses)
yang tersedia. Pengertian dasar komputer: yaitu suatu system yang menggabungkan beberapa peralatan elektronik untuk memproses data yang di masukkan oleh peralatan input kemudian diolah oleh unit pemroses dan hasilnya berupa informasi melalui peralatan output. 
Sebagaimana arsitektur bangunan, kualitas atau mutu arsitektur komputer tidak mudah diukur. Seperti halnya atribut yang menjadikan arsitektur bangunan bermutu, sebagian besar atribut berikut sulit dihitung. Pada hakekatnya, suatu arsitektur yang baik untuk satu aplikasi mungkin saja jelek untuk aplikasi yang lain, dan sebaliknya. Pada bagian ini, kita akan membahas enam atribut mutu arsitektur: generalitas (keumuman), daya terap, efisiensi, kemudahan penggunaan, daya tempa, dan daya kembang 
(ekpandabilitas).

Generalitas
Generalitas adalah ukuran besarnya jangkauan aplikasi yang bisa cocok dengan arsitektur. Sebagai contoh, komputer yang terutama digunakan untuk aplikasi ilmiah dan teknik menggunakan aritmetik floating-point (dengan nomor disimpan dengan penunjuk besarnya dan eksponennya) dan komputer yang terutama digunakan untuk aplikasi bisnis menggunakan aritmetik desimal (dengan nomor ditampilkan sesuai dengan digit desimalnya). Sistem umum memberikan dua jenis aritmetik.
Walaupun nomor instruksi dalam set instruksi bukan merupakan ukuran langsung bagi generalitas komputer, namun ia memberikan indikasi generalitas. Keanekaragaman modepengalamatan juga merupakan indikasi generalitas. Meskipun demikian, RISC begitu umum walau ia mempunyai set instruksi yang kecil dengan mode pengalamatan yang sedikit.
Salah satu pembahasan utama oleh kalangan peneliti komputer selama tahun 1980-an adalah persoalan bagusnya generalitas. Akhir-akhir ini, persoalan ini mengarah pada opini bahwa generalitas adalah tidak bermanfaat. Generalitas cenderung meningkatkan kekompleksan implementasi. Bagi rumpun komputer yang besar dari berbagai perusahaan, kekompleksan ini mengakibatkan sulitnya perancangan mesin. Generalitas juga cenderung membuat compiler optimisasi menjadi lebih kompleks, karena ia harus memilih lebih banyak instruksi ketika menggenerasi (menghasilkan) kode. Juga, generalitas cenderung mengakibatkan kompleksitas, dan desain sistem yang menggunakan komputer akan mengakibatkan kekompleksan software, yang seharusnya developer akan secara mudah mengoreksi kesalahan.
Salah satu argumen komersial dalam menerapkan generalitas adalah bahwa, karena ia menyebabkan perancangan komputer menjadi sulit, maka perusahaan yang melakukan perancangan tersebut bisa mengurangi peniruan rancangan oleh perusahaan lain. Tak ada perusahaan komputer yang besar ingin kehilangan pasamya atas rancangan komputer yang ia buat.

Daya Terap
Daya terap (applicability) adalah pemanfaatan arsitektur untuk penggunaan yang telah direncanakannya. Komputer yang terutama dirancang untuk satu dari dua area aplikasi utama: (1) aplikasi ilmiah dan teknis dan (2) aplikasi komersil biasa. Aplikasi ilmiah dan teknis adalah aplikasi yang biasanya untuk memecahkan persamaan kompleks dan untuk penggunaan aritmetik floating point ekstensif. Mereka ini adalah computation-intensive application(aplikasi komputasi intensit), yang berarti mereka mempunyai rasio operasi CPU ke memori dan operasi I/O yang jauh lebih tinggi dari pada aplikasi lain (walaupun banyak komputasi simbolisnya juga merupakan computation-intensive). Aplikasi komersil umum atau biasa adalah aplikasi yang didukung oleh pusat komputer biasa: menghimpun (compiling), menghitung (accounting), mengedit, penggunaan spreadsheet,dan word prosesing
seperti yang ada di komputer secara umum.

Efisiensi
Efisiensi adalah ukuran rata-rata jumlah hardware dalam komputer yang selalu sibuk selama penggunaannya biasa. Arsitektur yang efisien memungkinkan (namun tidak memastikan) terjadinya implementasi yang efisien. Perlu anda catat, bahwa ada pertentangan antara efisiensi dan generalitas. Juga, karena turunnya harga komponen komputer,maka sekarang efisiensi tidak terlalu dipikirkan seperti halnya pada awal pengembangan komputer.
Namun demikian, arsitektur yang efisien akan memungkinkan terjadinya implementasi berkecepatan sangat tinggi dan berbiaya sangat rendah, dan dalam rumpun komputer yang besar, implementasi yang demikian tersebut sangat diperlukan. Salah satu sifat arsitektur yang efisien adalah bahwa ia secara relatif cenderung sederhana. Karena untuk merancangsistem yang kompleks secara benar begitu sulit, maka kebanyakan komputer mempunyai sebuah komputer inti  (core computer) efisien yang sederhana, yaitu CPU. CPU ini mempunyai layer kontrol disekelilingnya guna memberikan fasilitas yang canggih yang dibutuhkan oleh arsitektur.

Kemudahan Penggunaan
Kemudahan penggunaan arsitektur adalah ukuran kesederhanan bagi programmer sistem untuk mengembangkan atau membuat software untuk arsitektur tersebut, misalnya sistem pengoperasiannya atau compilernya. Oleh karena itu, kemudahan penggunaan ini merupakan fungsi ISA dan berkaitan erat dengan generalitas. Definisi ini jangan dikacaukan dengan istilah ‘mudah untuk digunakan’ (friendly) yang diperuntukkan bagi pemakai dalam menggunakan komputer. Istilah mudah untuk digunakan ini ditentukan oleh sistem pengoperasian dan software yang ada,  bukannya arsitektur dasar. Kita bisa mengambil contoh dari beberapa komputer yang tidak mempunyai kemudahan penggunaan, dengan perancang compiler sulit mengimplementasikan beberapa bahasa pemrograman tingkat tinggi.
Set instruksi dari koniputer awal kadang-kadang kekurangan instruksi untuk melakukan operasi yang penting. Akibatnya, para programmer harus menggunakan urutan instruksi yang kacau untuk mengimplementasi operasi yang penting tersebut. Sekarang ini, arsitek set instruksi telah mempunyai banyak pengalaman untuk merancang set instruksi, sehingga kelemahan tersebut jarang ditemukan.

Daya Tempa (malleability)
Empat ukuran sebelumnya daya terap, generalitas, efisiensi, dan kemudahan penggunaan berlaku untuk arsitekturrumpun komputer. Dua ukuran yang terakhir daya tempa dan daya kembang umumnya berlaku untuk implementasi komputer dalam satu rumpun. Daya terap arsitektur adalah ukuran kemudahan bagi perancang untuk mengimplementasikan komputer (yang mempunyai arsitektur itu) dalam jangkauan yang luas. Lebih spesifik arsitekturnya, maka akan lebih sulit untuk membuat mesin yangberbeda ukuran dan kinerjanya dari yang lain. Secara analogis, bila seseorang menamakan suatu arsitektur rumah sebagai rumah kolonial, maka dimungkinkan rumah tersebut mempunyai ukuran dan gaya yang berbeda dengan yang lain. Sebaliknya, jika arsitektur telah menentukan rencana induknya, maka hanya dimungkinkan sedikit variasi implementasi.
Umumnya, arsitektur mencakup banyak gambaran setiap tingkat dengan detail. Rencana dasar atau induk dari rumah kolonial tersebut meliputi berbagai detail, misalnya tembok, pintu, saluran listrik dan air. Dalam kaitannya dengan komputer personal standart industri, spesifikasinya longgar, seperti halnya spesifikasi pada rumah kolonial tersebut. Pada Apple Macintosh atau IBM PC AT, spesifikasi arsitekturnya jauh lebih lengkap, sehingga semua implementasi hampir sama.

Daya Kembang
Daya kembang (expandability) adalah ukuran kemudahan bagi perancang untuk meningkatkan kemampuan arsitektur, misalnya kemampuan ukuran memori maksimumnya atau kemampuan aritmetiknya. Umumnya, spesifikasi rumpun komputer memungkinkan perancang untuk menggunakan ukuran memori yang berjangkauan luas dalam anggota rumpun. Sebagai contoh, karena arsitektur DEC VAX hanya menentukan ukuran memori secara tidak langsung dan hanya berada dalam batasan luas tertentu, maka komputer VAX mempunyai ukuran memori yang bervariasi yang lebih dari satu faktor 1000.
Para perancang dapat memperoleh daya kembang memori ekstemal dengan berbagai cara: Mereka dapat meningkatkan jurhlah eralatan atau mereka dapat meningkatkan kecepatan peralatan tersebut dalam menggerakkan data ke dan dari dunia luar. Banyak arsitektur yang mengabaikan aspek penentuan struktur I/O. Kurangnya spesifikasi akan meningkatkan daya kembang, namun ia bisa juga meningkatkan jumlah pemrograman kembali yang diperlukan oleh anggota rumpun yang baru.
Beberapa komputer mempunyai lebih dari satu CPU. Dalam hal ini, daya kembang juga berkaitan dengan jumlah CPU yang dapat digunakan oleh sistem secara efektif. Barrier (penyangga) pada komputer yang mempunyai CPU lebih dari satu umumnya tidak jelas. Jika programmer sistem mendapatkan kesulitan untuk menyinkronkan CPU-CPU, misalnya, maka sinkronisasi ini secara efektif akan membatasi jumlah CPU yang dapat digunakan sistem.

-          Sejarah perkembangan komputer :
Selama perang dunia kedua negara-negara maju yang sedang berperang berlomba-lomba menciptakan peralatan canggih yang digunakan untuk media informasi dan radar  untuk keperluan militer.Komputer diperkenalkan pertama kali di universitas Pensylvania dengan berbasis teknologi tabung hampa udara  yang digunakan pada peralatan radio.
1.      Generasi pertama (1945-1955)
Konsep utama arsitektur komputer diperkenalkan oleh john Von Neuman, Program dan datanya diletakkan dalam memori yang sama , operasi aritmatika dasar dilakukan dalam beberapa milidetik menggunakanteknologi tabung hampa udara untuk menerapkanfungsi logika, teknologi ini menghasilkan peningkatan kecepatan  dengan kelipatan 100 hingga 1000 kali relatif terhadap teknologi mekanik dan elektromekanik berbasis relay dan fungsi I/O dilaksanakan oleh alat yang mirip mesin ketik .
2.      Generasai kedua (1955-1965)
Perusahan AT&T Bell laboratories menemukan Transistor pada akhir tahun 1940-an dan dengan cepat menggantikan tabung hampa udara, pada periode ini dikembangkan memori berinti magnetic, bahasa tingkat tinggi, program system yang disebut Compiler, Prosedure I/O terpisah juga dikembangkan . pada periode ini IBM menjadi produsen komputer terbesar.
3.      Generasi ketiga (1965-1975)
Dengan ditemukannya  IC ( Integrated circuit) mulai menggantikan memori berinti magnetic, adanya pengenalan microprogramming, pararelism, software system operasi memungkinkan pembagian yang efisien suatu system komputer oleh beberapa program user (multiuser), selain tiu dikembangkakn memori cache virtual, computer mainframe system 360 dari IBM dan jenis mini komputer PDP dari Digital Equipment Corporation merupakan komersial yang dominan pada generasi ini.
4.      Generasi keempat(1975 – sekarang)
Teknik Fabrikasi Integreted circuit berevolusi  ketitik derah processor utama lengkap dengan pembagian besar dari memori utama suatu komputer kecil yang dapat diimplementasikan pada chip tunggal dengan 10000 transistor.generasi ini terus berkembang dengan ditemukannya Very large scale integration (VLSI) sehingga memungkinkan processor berkembang semakin cepat.dan kemampuan memori mencapai kecepatan 2